Lesson 9. Velocity and Acceleration

1 Overview

2

How can we find the velocity and acceleration of an object in 3D space?

• How can we find the velocity and acceleration of an object in 3D space:
Definitions
• Let $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ be the position vector an object's position at time t
• For example, at time $t = 2$, the object is at point
• The average velocity of the object over the time interval $[t_1, t_2]$ is
Change in position (displacement) per unit time
• The velocity of the object at time <i>t</i> is
Limit of average velocity as the interval length approaches 0
• The speed of the object at time <i>t</i> is
• The acceleration of the object at time <i>t</i> is
How does the velocity change?
Example 1. Find the velocity, acceleration, and speed of a helicopter at time t with position vector $\vec{r}(t) = \langle e^t, te^t, \ln t \rangle$ What about when $t = 2$?

t. If you have f	t'(t), then what d	$loes \int f'(t) dt$	give you?			
n general we	can recover veloc	rity when accel	eration is kno	wn·		

		1 1	ı			
Ve can also red	cover position wh	ien velocity is i	known:			

Example 3. An airpla a minimum?	ine moves in space acc	cording to the vecto	r tunction $\vec{r}(t) = \langle$	$t^2 - 4t, t^2, 4t$. W	hen is the speed